skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hassan, Umer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phagocytosis is a critical component of innate immunity that helps the body defend itself against infection, foreign particles, and cellular debris. Investigating and quantifying phagocytosis can help understand how the immune system identifies foreign particles and how phagocytosis relates to other biomarkers, e.g., cytokines, cell surface receptors, or blood lactate levels. In particular, increased blood lactate levels can be a potential biomarker to study diseases, e.g., septic shock. Establishing a relationship between phagocytosis and lactate levels can serve as an effective tool to monitor the immune response and may help stratify patients. In this study, we use phagocytosis activity data to classify the patients into two groups of blood lactate levels (High and Low) with machine learning models. The neutrophils extracted from the whole blood samples of 19 patients were used to collect data on phagocytosis, where the neutrophils were allowed to internalize IgG coated fluorescent bioparticles. The data collection process involved collecting whole blood samples, neutrophil isolation, adding fluorescent beads, incubating, and imaging the sample using a fluorescence microscope. The phagocytosis assay images were used to generate a numerical dataset by manually counting the number of particles engulfed by each cell. The study first presents an improved understanding by employing hierarchical clustering and heatmaps to generate the graphical representation of phagocytosis data. By comparing the results of heat maps and clustering techniques, it can be observed that the phagocytosis activity data can be used to differentiate blood lactate levels in two groups (control and high-risk). Later, three machine learning models (Decision Tree, k-nearest Neighbor, and Naïve Bayes) were trained on the original and pruned datasets after the outliers were removed. The AI models classified the data into high-risk and low-risk groups of blood lactate levels. A maximum classification accuracy of 78% and an area under the curve of 0.78 was achieved using the trained models. 
    more » « less
  2. Many biomedical experimental assays rely on cell-to-microparticle conjugation and their subsequent detection to quantify disease-related biomarkers. In this report, we investigated the effect of particle attachment position on a cell’s surface to a signal acquired using impedance cytometry. We also present a novel configuration of independent coplanar microelectrodes positioned at the bottom and top of the microfluidic channel. In simulation results, our configuration accurately identifies different particle positions around the cell. We implemented a channel design with focusing regions between electrodes, and considered external factors around the channel such as polydimethylsiloxane (PDMS) interacting with the electric field and physical constraints of top electrodes placed farther away from the channel which improves detection accuracy. 
    more » « less
  3. Portable smartphone-based fluorescent microscopes are becoming popular owing to their ability to provide major functionalities offered by regular benchtop microscopes at a fraction of the cost. However, smartphone-based microscopes are still limited to a single fluorophore, fixed magnification, the inability to work with a different smartphones, and limited usability to either glass slides or cover slips. To overcome these challenges, here we present a modular smartphone-based microscopic attachment. The modular design allows the user to easily swap between different sets of filters and lenses, thereby enabling utility of multiple fluorophores and magnification levels. Our microscopic smartphone attachment can also be used with different smartphones and was tested with Nokia Lumia 1020, Samsung Galaxy S9+, and an iPhone XS. Further, we showed imaging results of samples on glass slides, cover slips, and microfluidic devices. A 1951 USAF resolution test target was used to quantify the maximum resolution of the microscope which was found to be 3.9 μm. The performance of the smartphone-based microscope was compared with a benchtop microscope and we found an R 2 value of 0.99 using polystyrene beads and blood cells isolated from human blood samples collected from Robert Wood Johnson Medical Hospital. Additionally, to count the particles (cells and beads) imaged from the smartphone-based fluorescent microscope, we developed artificial neural networks (ANNs) using multiple training algorithms, and evaluated their performances compared to the control (ImageJ). Finally, we did ANOVA and Tukey's post-hoc analysis and found a p -value of 0.97 which shows that no statistical significant difference exists between the performance of the trained ANN and control (ImageJ). 
    more » « less
  4. Abstract Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass. This article is categorized under:Diagnostic Tools > Biosensing 
    more » « less